Fermi-Dirac statistics plus liquid description of quark partons
نویسندگان
چکیده
منابع مشابه
Fermi-dirac Distributions for Quark Partons
We propose to use Fermi-Dirac distributions for quark and antiquark partons. It allows a fair description of the x-dependence of the very recent NMC data on the proton and neutron structure functions F p 2 (x) and F n 2 (x) at Q = 4 GeV, as well as the CCFR antiquark distribution xq(x). We show that one can also use a corresponding Bose-Einstein expression to describe consistently the gluon dis...
متن کاملFermi-Dirac Statistics
Fermi-Dirac statistics are one of two kinds of statistics exhibited by!identical quantum particles, the other being !Bose-Einstein statistics. Such particles are called fermions and bosons respectively (the terminology is due to Dirac [1902-1984] [1]). In the light of the !spin-statistics theorem, and consistent with observation, fermions are invariably spinors (of half-integral spin), whilst b...
متن کاملBosonic Analogue of Dirac Composite Fermi Liquid.
We introduce a particle-hole-symmetric metallic state of bosons in a magnetic field at odd-integer filling. This state hosts composite fermions whose energy dispersion features a quadratic band touching and corresponding 2π Berry flux protected by particle-hole and discrete rotation symmetries. We also construct an alternative particle-hole symmetric state-distinct in the presence of inversion ...
متن کامل1926 Enrico Fermi discovers the spin - statistics connection 1926 Paul Dirac introduces Fermi - Dirac
-260 Archimedes mathematically works out the principle of the lever and discovers the principle of buoyancy 60 Hero of Alexandria writes Metrica, Mechanics, and Pneumatics 1490 Leonardo da Vinci describes capillary action 1581 Galileo Galilei notices the timekeeping property of the pendulum 1589 Galileo Galilei uses balls rolling on inclined planes to show that di erent weights fall with the sa...
متن کاملDiffusive Semiconductor Moment Equations Using Fermi-Dirac Statistics
Diffusive moment equations with an arbitrary number of moments are formally derived from the semiconductor Boltzmann equation employing a moment method and a Chapman-Enskog expansion. The moment equations are closed by employing a generalized Fermi-Dirac distribution function obtained from entropy maximization. The current densities allow for a drift-diffusion-type formulation or a “symmetrized...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Zeitschrift für Physik C Particles and Fields
سال: 1995
ISSN: 0170-9739,1434-6052
DOI: 10.1007/bf01565262